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Abstract

Ensemble machine learning algorithms, referred to as random for-
est (Breiman (2001)) and as boosting (Schapire (1990)), are applied to
quickly and accurately detect economic turning points in the United
States and in the euro area. The two key features of those algorithms
are their abilities to entertain a large number of predictors and to per-
form estimation and variable selection simultaneously. The real-time
ability to nowcast economic turning points is gauged. To assess the
value of the models, profit maximization measures are employed in ad-
dition to more standard criteria. When comparing predictive accuracy
and profit measures, the model confidence set procedure (Hansen et al.
(2011)) is applied to avoid data snooping. The investment strategies
based on the models achieve impressive risk-adjusted returns: macroe-
conomists can get rich nowcasting economic turning points.
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Introduction

Economic turning points detection in real time is a notorious difficult task.
Economists often fail to detect if a new economic phase has already begun.
For instance, the Survey of Professional Forecasters conducted in May 2008,
by the American Statistical Association and the National Bureau of Eco-
nomic Research, said there would not be a recession in 2008, even though
one had already started.

Researchers and investors focus mainly on the business cycle detection,
which is meant to reproduce the cycle of the global level of activity of a
country. However, Raffinot (2014) emphasizes that the growth cycle, defined
as the deviation of the real GDP to its long-term trend, is much more in-
teresting for euro and dollar-based investors. Indeed, in theory, investment
strategies based on growth cycle turning points achieve better risk-adjusted
returns than those based on business cycle turning points.

If the long-term trend is considered as the estimated potential level1, then
the growth cycle equals the output gap. A turning point of the output gap
occurs when the current growth rate of the activity is above or below the
potential growth rate, thereby signalling increasing or decreasing inflation
pressures. Quickly detecting growth cycle turning points provides thus ex-
tremely reliable pieces of information for the conduct of monetary policy. For
instance, if a central bank wants to loosen monetary policy, because inflation
is running under the target, a through of the output gap would indicate that
its strategy starts to bear fruit.

One stylised fact of economic cycles is the non-linearity: the effect of a
shock depends on the rest of the economic environment. For instance, small
shock, such as a decrease in housing prices, can sometimes, but not always,
have large effects, such as a recession. Real-time regime classification and
turning points detection require thus methods capable of taking into account
the non-linearity of the cycles. In this respect, many parametric models have
been proposed, especially Markov switching models (see Piger (2011)) and
probit models (see Liu and Moench (2014)). Parametric models are effective
if the true data generating process (DGP) linking the observed data to the
economic regime is known. In practice, however, one might lack such strong
prior knowledge. It leads to practical issues in estimating parametric models,
especially the presence of frequent local maxima in the likelihood. Therefore,
in the absence of knowledge of the true DGP, non-parametric methods are
advocated, such as machine-learning algorithms, as they do not rely on a

1The potential output is the maximum amount of goods and services an economy can
turn out at full capacity
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specification of the DGP (Giusto and Piger (ming)).
The machine-learning approach assumes that the DGP is complex and un-

known and attempts to learn the response by observing inputs and responses
and finding dominant patterns. This places the emphasis on a model’s ability
to predict well and focuses on what is being predicted and how prediction
success should be measured. Machine learning is used in spam filters, ad
placement, credit scoring, fraud detection, stock trading, drug design, and
many other applications. Giusto and Piger (ming) introduce in economics
a very simple machine-learning algorithm known as Learning Vector Quan-
tization (LVQ), which appears very competitive with commonly used alter-
natives. Raffinot (2015) also provides evidence that LVQ is very effective,
despite its simplicity, and that some economic and financial indicators can be
exploited to quickly identify turning points in real time in the United States
and in the euro area. The main drawback with the latter approach is that
the model selection is very complex, time and data consuming. For instance,
the first step consists in narrowing down the predictors to only those that
are relevant. All possible combinations of four variables from the selected
predictors are then computed and the best model is selected.

Over the last couple of decades, researchers in the computational intelli-
gence and machine learning community have developed more complex meth-
ods, also called ensemble learning, which improve prediction performances.
Ensemble methods are learning models that achieve performance by com-
bining the opinions of multiple learners. The two most popular techniques
for constructing ensembles are random forest (Breiman (2001)) and boosting
(Schapire (1990)). The two features of those algorithms are their abilities to
entertain a large number of predictors and to perform estimation and vari-
able selection simultaneously. Paradoxically, both methods work by adding
randomness to the data (Varian (2014)), although they have substantial dif-
ferences. Random forest relies on simple averaging of models in the ensemble
and boosting is an iterative process where the errors are kept being modelled.

While the random forest algorithm is usually applied in medical research
and biological studies, it is largely unknown in economics and to the best
of my knowledge has not been applied to economic turning point detection.
Boosting is increasingly applied to empirical problems in economics. Ng
(2014) and Berge (2015) apply the algorithm to the problem of identifying
business cycle turning points in the United States.

This paper aims at applying random forest and boosting algorithms to
create several models aiming at quickly and accurately detecting growth cycle
turning points in real time, not only in the United States but also in the euro
area. Those models are then combined, as averaging forecasts from different
models often improves upon forecasts based on a single model (Bates and
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Granger (1969)).
The real-time ability to nowcast economic turning points is assessed.

Since, for investors, the usefulness of a forecast depends on the rewards asso-
ciated with the actions taken by the agent as a result of the forecast, profit
maximization measures based on trading strategies are employed in addition
to more standard criteria. To gauge the economic magnitude of the models,
simple hypothetical trading strategies are created. To avoid data snooping,
which occurs when a given set of data is used more than once for purposes of
inference or model selection, the comparison of predictive accuracy and profit
measures is assessed using the model confidence set procedure proposed by
Hansen et al. (2011) .

The findings of the paper can be summarized as follows: ensemble ma-
chine learning algorithms are very effective to detect economic turning points.
Investment strategies achieve thus excellent risk-adjusted returns in the
United States and in the euro area. However, the selection of the best model
is a challenging task. For instance, economists and investors would not always
choose the same model. Moreover, depending on the data and the objective,
random forest sometimes performs better than boosting, sometimes not. In
the end, combining forecasts seems to be the best option.

The rest of the paper proceeds as follows. Section 1 introduces ensemble
machine learning algorithms, referred to as random forest and as boosting.
Section 2 describes the empirical set up: the turning point chronology, the
data-set, the alternative models and the evaluation of the forecasts. Section
3 analyses the empirical results.

1 Ensemble Machine Learning Algorithms

Making decisions based on the input of multiple people or experts has been
a common practice in human civilization and serves as the foundation of a
democratic society. Over the last couple of decades, researchers in the compu-
tational intelligence and machine learning community have studied schemes
that share such a joint decision procedure. Ensemble methods are learn-
ing models that achieve performance by combining the opinions of multiple
learners.

Two of the most popular techniques for constructing ensembles are ran-
dom forest (Breiman (2001)) and boosting (Schapire (1990)). The two key
features of those algorithms are their abilities to entertain a large number of
predictors and to perform estimation and variable selection simultaneously.

Paradoxically, both methods work by adding randomness to the data,
but adding randomness turns out to be a helpful way of dealing with the
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overfitting problem (Varian (2014)). Overfitting denotes the situation when
a model targets particular observations rather than a general structure: the
model explains the training data instead of finding patterns that generalize
it. In general, overfitting the model takes the form of making an overly com-
plex model. Attempting to make the model conform too closely to slightly
inaccurate data can infect the model with substantial errors and reduce its
predictive power. In other words, your model learn the training data by
heart instead of learning the patterns which prevent it from being able to
generalized to the test data.

Nevertheless, those methods have substantial differences. Random forest
relies on simple averaging of models in the ensemble. They derive their
strength from two aspects: randomizing subsamples of the training data
and randomizing the selection of features. Boosting methods are based on
a different strategy of ensemble formation: boosting combines models that
do not perform particularly well individually into one with much improved
properties. The main idea is to add new models to the ensemble sequentially.
At each particular iteration, a new weak, base-learner model is trained with
respect to the error of the whole ensemble learned so far.

1.1 Random forest

Random forest (RF henceforth) is a non-parametric statistical method for
both high-dimensional classification and regression problems, which requires
no distributional assumptions on covariate relation to the response.

RF is a way of averaging multiple deep decision trees, trained on different
parts of the same training set, with the goal of overcoming overfitting problem
of individual decision tree. In other words, RF builds a large collection of
de-correlated trees and then averages their predictions. The method is fast,
robust to noise and produces surprisingly good out-of-sample fits, particularly
with highly nonlinear data (Caruana and Niculescu-Mizil (2005)).

1.1.1 Classification and Regression Trees algorithm

Classification and regression trees (CART henceforth), introduced by
Breiman et al. (1984), are machine-learning methods for constructing predic-
tion models from data that can be used for classification or regression. The
models are obtained by recursively partitioning the data space and fitting a
simple prediction model within each partition. As a result, the partitioning
can be represented graphically as a decision tree.

The tree is generated in a recursive binary way, resulting in nodes con-
nected by branches. A node, which is partitioned into two new nodes, is
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called a parent node. The new nodes are called child nodes. A terminal node
is a node that has no child nodes.

A CART procedure is generally made up of two steps. In the first step, the
full tree is built using a binary split procedure. The full tree is an overgrown
model, which closely describes the training set. In the second step, the model
is pruned to avoid overfitting.

Given a dataset with explanatory inputs x, the CART algorithm can be
summarized as follows:

Step 1 Find each predictor’s best split:

Sort each predictor’s entries by increasing value. Iterate over all values
of the sorted predictor and find the candidate for the best split. That
is the value that maximizes the splitting criterion.

Step 2 Find the node’s best split:

To actually perform the split, compare all evaluated predictors from
step 1 and choose the split, that maximizes the splitting criterion.

Step 3 Let s be this best split of the winning predictor. All x ≤ s are sent to
the left node and all x > s to the right node.

So constructing a CART is accomplished by finding the best split, which
is just trying every possibility, calculating the ”goodness”’ of every possible
split and choose the best one. For every split at node t a splitting criterion
∆i(s|t) is calculated. The best split s, at node t maximizes this splitting
criterion ∆i(s|t), based on the Gini criterion in classification problems and
measured by mean squared error in regression trees. For classification, given
a node t with estimated class probabilities p(j|t) with j = 1, . . . , J being the
class label, a measure of node impurity given t is:

i(s|t) = 1−
∑
j

p(j|t)2 =
∑
j 6=k

p(j|t)p(k|t)

A search is then made for the split that most reduces node, or equivalently
tree, impurity.

1.1.2 Construction of a random forest

RF is an ensemble of tree predictors. Each decision tree is built from a
bootstrapped sample of the full dataset (Efron and Tibshirani (1994)) and
then, at each node, only a random sample of the available variables is used
as candidate variables for split point selection. Thus, instead of determining
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the optimal split on a given node by evaluating all possible splits on all
variables, a subset of the input variables are randomly chosen, and the best
split is calculated only within this subset. Once an ensemble of K trees is
built, the predicted outcome (final decision) is obtained as the average value
over the K trees.

Averaging over trees, in combination with the randomisation used in
growing a tree, enables random forests to approximate a rich class of func-
tions while maintaining a low generalisation error. This enables random
forests to adapt to the data, automatically fitting higher-order interactions
and non-linear effects, while at the same time keeping overfitting in check
(Ishwaran (2007)). As the number of trees increases, the generalization error
converges to a limit (Breiman (2001)).

A RF is constructed by the following steps:

Step 1 Given that a training set consists of N observations and M features,
choose a number m ≤ M of features to randomly select for each tree
and a number K that represents the number of trees to grow.

Step 2 Take a bootstrap sample Z of the N observations. So about two third
of the cases are chosen. Then select randomly m features.

Step 3 Grow a CART using the bootstrap sample Z and the m randomly
selected features.

Step 4 Repeat the steps 2 and 3, K times.

Step 5 Output the ensemble of trees TK1

For regression, to make a prediction at a new point x:

ŷRF (x) =
1

K

K∑
i=1

Ti(x)

For classification, each tree gives a classification for x. The forest chooses
the class that has the most out of n votes. Calculating the associated prob-
ability is easily done.

Since Breiman (2001) uses unpruned decision trees as base classifiers,
RF has basically only one parameter to set: the number of features to ran-
domly select at each node. Typically, for a classification problem with M
features,

√
M features (rounded down) are used in each split and M/3 fea-

tures (rounded down) with a minimum node size of 5 as the default are
recommended for regression problems (Friedman et al. (2000)).
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1.2 Boosting

Boosting is based on the idea of creating an accurate learner by combining
many so-called ”weak learners” (Schapire (1990)), i.e., with high bias and
small variance. The main concept of boosting is to add new models to the
ensemble sequentially. At each particular iteration, a new weak, base-learner
model is trained with respect to the error of the whole ensemble learned so
far. The final model hopefully yields greater predictive performance than the
individual models. The heuristics is thus simple: an iterative process where
the errors are kept being modelled.

The original boosting algorithms such as AdaBoost (Freund and Schapire
(1997)), were purely algorithm-driven, which made the detailed analysis of
their properties and performance rather difficult (Schapire (2003)). The gra-
dient descent view of boosting (Friedman (2001), Friedman et al. (2000)) has
connected boosting to the more common optimisation view of statistical in-
ference. This formulation of boosting methods and the corresponding models
are called the gradient boosting machines (GBM henceforth).

Using a learning sample (yi; xi)(i=1,...,n), where the response y is continuous
(regression problem) or discrete (classification problem) and x = (x1, ...,xd)
denotes a d-dimensional explanatory input variables, the objective is to ob-
tain an estimate f̂(x) of the function f(x), which maps x to y. The task is
thus to estimate the function f̂(x), that minimizes the expectation of some
loss function, Ψ(y, f), i.e.,

f̂(x) = arg min
f(x)

E(Ψ(y, f(x))

The loss function Ψ(y, f) is assumed to be smooth and convex in the
second argument to ensure that the gradient method works well.

An approximate solution to the minimization problem is obtained via
forward stagewise additive modeling, which approximates the solution by
sequentially adding new basis functions to the expansion without adjusting
the parameters and coefficients of those that have already been added.

GBM take on various forms with different programs using different loss
functions, different base models, and different optimization schemes. This
high flexibility makes GBM highly customizable to any particular data-driven
task and introduces a lot of freedom into the model design thus making the
choice of the most appropriate loss function a matter of trial and error. As
a matter of fact, Friedman et al. (2000) warned that given a dataset, it is
rarely known in advance which procedures and base learners should work the
best, or if any of them would even provide decent results.

Loss-functions can be classified according to the type of response vari-
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able y. In the case of categorical response, the response variable y typically
takes on binary values y ∈ 0, 1. To simplify the notation, let us assume the
transformed labels ȳ = 2y − 1 making ȳ ∈ −1, 1.

The most frequently used loss-functions for classification are the following:
-Adaboost loss function: Ψ(y, f(x)) = exp(−ȳf(x))
-Binomial loss function: Ψ(y, f(x)) = − log(1 + exp(−2ȳf(x)))

The Binomial loss function is far more robust than the Adaboost loss
function in noisy settings (mislabels, overlapping classes).

The most frequently used loss-functions for regression are the following:
-Squared error loss: Ψ(y, f(x)) = (y − f(x))2

-Absolute loss: Ψ(y, f(x)) = |y − f(x|

Several types of weak learners have been considered in the boosting liter-
ature, including decision trees (e.g., stumps, trees with two terminal nodes)
(Friedman (2001)), smoothing splines (Bühlmann and Yu (2003)), wavelets
(Wu et al. (2004)) and many more.

To design a particular GBM for a given task, one has to provide the
choices of functional parameters Ψ(y, f) and the weak learner h(x, θ), char-
acterized by a set of parameters θ. For instance, for decision trees, θ describes
the axis to be split, the split points and the location parameter in terminal
nodes.

The principle difference between boosting methods and conventional
machine-learning techniques is that optimization is held out in the function
space (Friedman (2001)). That is, the function estimate f̂(x) is parameter-
ized in the additive functional form:

f̂(x) =

Mstop∑
i=0

f̂i(x)

Moreover, a common procedure is to restrict f̂(x) to take the form:

f̂(x) =

Mstop∑
m=1

βmh(x, θm)

The original function optimization problem has thus been changed to a
parameter optimization problem.

The GBM algorithm can be summarized as follows:

Step 1 Initialize f̂0(x) = arg minρ
∑N

i=1 Ψ(yi, ρ),m = 0.

Step 2 m = m+ 1
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Step 3 Compute the negative gradient

zi = − ∂

∂f(xi)
Ψ(yi, f(xi))|

f(xi)=f̂m−1(xi)
, i = 1, . . . , n

Step 4 Fit the base-learner function, h(x, θ) to be the most correlated with
the gradient vector.

θm = arg min
β,θ

n∑
i=1

zi − βh(xi, θm)

Step 5 Find the best gradient descent step-size ρm

ρm = arg min
ρ

N∑
i=1

Ψ(yi, f̂(xi)m−1 + ρh(x, θm))

Step 6 Update the estimate of fm(x) as

f̂m(x)← f̂(x)m−1 + ρmh(x, θm))

Step 7 Iterate 2-6 until m = Mstop.

The classic approach to controlling the model complexity is the intro-
duction of the regularization through shrinkage. In the context of GBM,
shrinkage is used for reducing, or shrinking, the impact of each additional
fitted base-learner. It reduces the size of incremental steps and thus penalizes
the importance of each consecutive iteration. A better improvement is done
by taking many small steps than by taking fewer large steps. Indeed, if one
of the boosting iterations turns out to be erroneous, its negative impact can
be easily corrected in subsequent steps.

The simplest form of regularization through shrinkage is the direct pro-
portional shrinkage (Friedman (2001)). In this case the effect of shrinkage is
directly defined as the parameter λ ∈ [0, 1]. The regularization is applied to
the step 6 in the gradient boosting algorithm:

f̂m(x)← f̂(x)m−1 + λρmh(x, θm))

A crucial issue is the choice of the stopping iteration Mstop. Boosting
algorithms should generally not be run until convergence. Otherwise, over-
fits resulting in a suboptimal prediction accuracy would be likely to occur
(Friedman et al. (2000)).
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One possible approach to choosing the number of iterations Mstop would
be to use an information criterion like Akaike’s AIC or some sort of minimum
description length criteria. However, they have been shown to overshoot the
true number of iterations (Hastie (2007)) and thus are not recommended for
practical usage. Cross-validation techniques should be used to estimate the
optimal Mstop (Hastie (2007)).

Briefly, cross-validation uses part of the available data to fit the model,
and a different part to test it. K-fold cross-validation works by dividing the
training data randomly into K roughly equal-sized parts. For the kth part,
the learning method is fit to the other K− 1 parts of the data, and calculate
the prediction error of the fitted model when predicting the kth part of the
data. This is done for k = 1, 2, ..., K and the K prediction error estimates are
averaged. An estimated prediction error curve as a function of the complexity
parameter is obtained (Hastie et al. (2009)). Typical choices of K are 5
and 10. When it comes to time series forecasting, Bergmeir et al. (2015)
demonstrate that K-fold cross-validation performs favourably compared to
both out-of-sample evaluation and other time-series-specific techniques.

In contrast to the choice of the stopping iteration, the choice of λ has
been shown to be of minor importance for the predictive performance of a
boosting algorithm. The only requirement is that the value of λ is small, e.g.
λ = 0.1 (Friedman (2001)).

In this paper, two different approaches are tested: a combination of a
binomial loss function with decision trees (”BTB”) as in Ng (2014) and a
combination of a squared error loss function with P-splines (”SPB”) as in
Berge (2015) or Taieb et al. (2015). P-splines ((Eilers and Marx (1996)))
can be seen as a versatile modeling tool for non-linear effects. Examples
include smooth effects, bivariate smooth effects (e.g., spatial effects), varying
coefficient terms, cyclic effects and many more.

2 Empirical setup

2.1 Turning point chronology in real time

Researchers and investors focus mainly on the business cycle detection, which
is meant to reproduce the cycle of the global level of activity of a country.
The turning points of that cycle separate periods of recession from periods of
expansion. Since absolute prolonged declines in the level of economic activity
tend to be rare events, Mintz (1974) introduces the growth cycle, defined as
the deviation of the real GDP to its long-term trend, to produce information
on economic fluctuations. The turning points of that cycle separate periods
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of slowdowns and accelerations. A slowdown signals thus a decline in the
rate of growth of the economy though not necessarily an absolute decline in
economic activity.

Raffinot (2014) emphasizes the importance of the growth cycle for euro
and dollar-based investors. Indeed, in theory, investment strategies based on
growth cycle turning points achieve better risk-adjusted returns than those
based on business cycle turning points.

Two economic phases are thus considered: slowdown and acceleration.
Applied to the context of nowcasting, the variable of interest y can be sum-
marized as follows:

yt =

{
1, if in acceleration

0, otherwise

It should be noted that y can be seen as continuous and as discrete.
In this paper, y is considered as discrete for the ”RF” model and ”BTB”
model. In these cases, ŷ is the probability of being in the regime referred to
as acceleration. For the ”SPB” model, y is considered as continuous. Even
in this case, ŷt is thought as estimating the probability of being in the regime
referred to as acceleration.

To implement the ensemble machine learning algorithms, a chronology of
economic regimes is needed. This paper employs the turning point chronology
established in Raffinot (2014) (see Appendix B).

The training sample runs over the period from January 1988 to December
2001. The performance of the models are then evaluated over the period
from January 2002 to December 2013. In the euro area, 54 % of the data are
classified as slowdown. In the United States, 71 % of the data are classified
as acceleration. Over the period from January 2002 to December 2013, there
were 7 turning points in the growth cycle in the euro area and 5 in the United
States.

In real time, the complete chronology is not available, but the monthly
GDP introduced by Raffinot (2007)2 allows to quickly refine the turning point
chronology.

In the empirical analysis, a recursive estimation of the models is done:
each month the model is estimated with the data and the chronology that
would have been available at the time the nowcasting is done. The models
are thus trained each month on a sample that extends from the beginning
of the sample through month T − 12, over which the turning point chronol-
ogy is assumed known. For instance, in January 2012, the chronology that

2A temporal disaggregation based on business surveys of the non revised values of gross
domestic product GDP is used to develop a monthly indicator of GDP.

12



would have been available to implement the models runs over the period from
January 1988 to January 2011.

Re-estimating the model at each point in time also allows the relationship
between covariates and the dependent variable to change (see Ng (2014)).
Since the aim of this paper is to emphasize that ensemble machine learning
algorithms can provide useful signals for policymakers and for investors in
real time, analysing the most frequently selected predictors is out of the scope
of this study.

2.2 Data set

The real-time detection of turning points faces the difficult issues of late re-
lease dates and data revision. As a matter of fact, key statistics are published
with a long delay, are subsequently revised and are available at different fre-
quencies. For example, gross domestic product (GDP) is only available on
a quarterly basis with a time span of one to three months, and sometimes
with significant revisions.

However, a range of monthly economic series are released giving indi-
cations of short-term movements. Among them, business surveys provide
economists for timely and reliable pieces of information on business activity.
They are subject to very weak revisions and are usually less volatile than
other monthly series. They are published before the end of the month they
relate to or just a few days after. In the euro area, surveys published by the
European Commission have been proven to be very effective (see Raffinot
(2007)). In the United States, the surveys published by the Institute for
Supply Management(ISM), the Conference Board and the National Associ-
ation of Home Builders (NAHB) are often tested in the literature (see Liu
and Moench (2014)).

Moreover, financial series, which are not revised and often available on a
daily basis, have also been considered: the yield curve, defined as the differ-
ence between the ten-year and the three-month yield, the level and curvature
of the yield curve (see Chauvet and Senyuz (2012) or Berge (2015)). Other
financial series are the investment-grade and high-yield corporate spreads,
stock markets (S&P500, Eurostoxx), stock markets volatility (see Chauvet
et al. (2015)), the VIX index and the VSTOXX index, which is the VIX
equivalent for the euro area. It should be added, that this paper uses end of
month values to match stock index futures and options contracts settlement
prices.3

Finally, some real economic data have been tested, such as the four-week

3http://www.cmegroup.com/trading/equity-index/fairvaluefaq.html
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moving average of initial claims for unemployment insurance, which is a
weekly measure of the number of jobless claims filed by individuals seeking
to receive state jobless benefits.4

To detect the turning points in real-time, not only original series are
screened, but also differentiated series (to underline the phases of low and
high pace of growth). Because of the classical trade-off between reliability
and advance, different lags of differentiation were considered: 1 to 18 months.
The large dataset of predictors consists of more than 1000 monthly variables
in the euro area and in the United States.

2.3 Alternative classifiers

2.3.1 Random guessing

To prove that the models are significantly better than random guessing,
several alternative classifiers, which assign classes arbitrarily, are computed.
The selected models should have a better accuracy than the latter.

The first one (Acc) classifies all data as ”acceleration”, the second one
(Slow) classifies all data as ”slowdown”. The last one (Random) randomly
assigns classes based on the proportions found in the training data. Thousand
different simulations are computed and average criteria are provided.

2.3.2 Parametric models

The term spread has been proved to be an excellent leading indicator of
recession in the United States (Liu and Moench (2014)) and in the euro
area (Duarte et al. (2005)). Nowcasts from probit models based on the term
spread are thus computed5.

For a given covariate xn, based on the learning sample
(R1, x1), ..., (RT−12, xT−12), the model is characterized by the simple
equation:

P (Rprobit
t = 1) = Φ(α0 + α1xt)

where Φ denotes a standard Gaussian cumulative distribution function,
i. e.

4All series are provided by Datastream.
5Markov-switching dynamic factor models are effective to identify economic turning

points (Camacho et al. (2015)). However, variable selection in factor analysis is a chal-
lenging task: forecasts often improve by focusing on a limited set of highly informative
series. For instance, Boivin and Ng (2006) demonstrate that factor-based forecasts ex-
tracted from 40 variables perform better than those extracted from 147 variables. A
proper comparison is thus left for future research.
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Φ(z) =
1√
2π

∫ z

−∞
e−

1
2
t2dt

The probit model maximizes the following log likelihood function:

lnL(α0, α1) =
T−12∑
t=1

(1−Rt) ln[1− Φ(α0 + α1xt)] +Rt ln(Φ(α0 + α1xt))

2.3.3 Combining forecasts

A longstanding finding in the forecasting literature is that averaging forecasts
from different models often improves upon forecasts based on a single model
(see Bates and Granger (1969)).

Consider a situation where there are K different models to forecast a
variable of interest y. Each model i implies a forecast ŷi. Forecasts are then
combined into a single aggregated forecast:

ŷcomb =
K∑
i=1

wiŷi

As regards wi, various ways of combining forecast have been proposed.
Empirical evidence show that a simple combination methods often work rea-
sonably well relative to more complex combinations (see Clemen (1989) and
Timmermann (2006)). Claeskens et al. (2016) offer a theoretical explanation
for this stylized fact. In this paper, an equally weighted forecast is used:

ŷcomb =
1

K

K∑
i=1

ŷi

2.4 Model evaluation

2.4.1 Classical criteria

Two metrics are computed to evaluate the quality of classification of a model.
The first one is the Brier’s Quadratic Probability Score (QPS), defined

as follows:

QPS =
1

F

F∑
t=1

(ŷt − yt)2
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where t = 1, ..., F is the number of forecasts. The best model should
strive to minimize the QPS.

The second one is the area under the Receiver Operating Characteristics
curve (AUROC). Given a classifier and an instance, there are four possible
outcomes. If the instance is positive and it is classified as positive, it is
counted as a true positive (Tp(c)). If the instance is negative and classified
as negative, it is counted as a true negative (Tn(c)). If a negative instance is
misclassified as positive, it is counted as a false positive (Fp(c)). If a positive
instance is misclassified as negative, it is counted as a false negative (Fn(c)).

The Receiver Operating Characteristics (ROC) curve describes all possi-
ble combinations of true positive (Tp(c)) and false positive rates (Fp(c)) that
arise as one varies the threshold c used to make binomial forecasts from a
real-valued classifier. As c is varied from 0 to 1, the ROC curve is traced out
in (Tp(c), Fp(c)) space that describes the classification ability of the model.
A perfect classifier would fall into the top left corner of the graph with a
True Positive Rate of 1 and a False Positive Rate of 0.

Accuracy is measured by the Area Under the ROC curve (AUROC),
defined by:

AUROC =

∫ 1

0

ROC(α)dα

An area of 1 represents a perfect test, an area of 0.5 represents a worth-
less test. A general rule of thumb is that an AUROC value exceeding 0.85
indicates a useful prediction performance.

Hanley and McNeil (1982) propose a test to compare the AUROC pre-
dictive accuracy. The aim is to test the best models in the selection with
another criteria, thereby further reducing the set. The t-statistic for the test
of H0 : AUROC1 = AUROC2 is given by:

t =
AUROC1 − AUROC2√

(σ2
1 + σ2

2 − 2rσ1 ∗ σ2
where, AUROC1 and AUROC2 are the areas under the curve for models

1 and 2 which are being compared. Similarly, σ1 and σ2 refer to the variances
of the AUROCs for model 1 and model 2, respectively. Finally, r is the corre-
lation between the two AUROCs (see Hanley and McNeil (1982) or Liu and
Moench (2014) for more details on the test statistic and its implementation).

In this paper, a two-step model selection is computed. The first step is to
select the best set of models according to Brier’s Quadratic Probability Score
(QPS) and then the selection is refined based on the the area under the ROC
curve (AUROC) and the test proposed by Hanley and McNeil (1982).
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2.4.2 Profit maximization measures

For investors, the usefulness of a forecast depends on the rewards associated
with the actions taken by the agent as a result of the forecast. In addition
to more standard criteria, profit maximization measures are thus employed.

Since asset classes behave differently during different phases of the eco-
nomic cycles (Raffinot (2014)), investment strategies based on economic
regimes induced by the models should generate significant profits.

In order to frame the concept of active portfolio management, a specified
investment strategy is required. The investment strategies are as stripped-
down and simple as possible without raising concerns that the key results
will not carry over to more general and intricate methods or asset classes.

We first consider an equity portfolio manager investing 100e or 100$
on January 1, 2002. Each month, the investor decides upon the fraction of
wealth to be invested based on the current state of the economy induced by
the model based on the data that would have been available at the time the
decision was made. If the model classifies the period as acceleration, then
the investor can leverage his portfolio (120% of his wealth is invested on the
asset and 20% of cash is borrowed), otherwise he only invests 80% of his
wealth and 20% is kept in cash.

Moreover, since asset classes perform differently during different stages of
the growth cycle, it might be reasonable to rebalance the portfolio (shifting
allocation weights) based on the stage of the growth cycle (Raffinot (2014)).
The second strategy aims at beating the classic asset allocation for an in-
stitutional portfolio, i.e. 60% of the portfolio allocated to equities and 40%
to fixed income securities (bonds). The investor decides each month to re-
balance his portfolio. If the model indicates acceleration, then 80% of the
portfolio is allocated to equities and 20% to bonds, otherwise 40% of the
portfolio is allocated to equities and 60% to bonds.

Pesaran and Timmermann (1994) and Han et al. (2013) demonstrate that
the total cost of transactions appears to be low, less than 1% (around 50 basis
points when trading in stocks while the cost for bonds is 10 basis points). To
simplify, no transaction costs are considered.

To avoid look-ahead bias, the reallocation takes place at the beginning
of the month following the turning point. As a matter of fact, an investor
could not know at the beginning of any month whether a turning point would
occur in that month.

For conventional comparison of the portfolio performances, annualized
average returns, annualized standard deviation (volatility), performance to
volatility ratio (PVR), max drawdown (MDD) are computed. The perfor-
mance to volatility ratio compares the expected returns of an investment to
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the amount of risk undertaken to capture these returns. The Max drawdown
(MDD) is the largest drop from the maximum cumulative return. In brief,
the MDD offers investors a worst case scenario.

2.4.3 Data snooping

Data snooping, which occurs when a given set of data is used more than once
for purposes of inference or model selection, leads to the possibility that any
results obtained in a statistical study may simply be due to chance rather
than to any merit inherent in the method yielding the results (see White
(2000)).

To avoid data snooping, the model confidence set (MCS) procedure
(Hansen et al. (2011)) is computed.

The MCS procedure is a model selection algorithm, which filters a set of
models from a given entirety of models. The resulting set contains the best
models with a probability that is no less than 1− α with α being the size of
the test (see Hansen et al. (2011)).

An advantage of the test is that it not necessarily selects a single model,
instead it acknowledges possible limitations in the data since the number of
models in the set containing the best model will depend on how informative
the data are.

More formally, define a set M0 that contains the set of models under
evaluation indexed by: i = 0, ...,m0. Let di,j,t denote the loss differential
between two models by

di,j,t = Li,t − Lj,t,∀i, j ∈M0

L is the loss calculated from some loss function for each evaluation point
t = 1, ..., T . The set of superior models is defined as:

M∗ = {i ∈M0 : E[di,j,t] ≤ 0 ∀j ∈M0}

The MCS uses a sequential testing procedure to determine M∗. The null
hypothesis being tested is:{

H0,M : E[di,j,t] = 0 ∀i, j ∈M whereM is a subset ofM0

HA,M : E[di,j,t] 6= 0 for some i, j ∈M
When the equivalence test rejects the null hypothesis, at least one model

in the set M is considered inferior and the model that contributes the most
to the rejection of the null is eliminated from the set M . This procedure is
repeated until the null is accepted and the remaining models in M now equal
M̂∗

1−α.
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According to Hansen et al. (2011), the following two statistics can be used
for the sequential testing of the null hypothesis:

ti,j =
di,j√
v̂ar(di,j)

and ti =
di√
v̂ar(di)

where m is the number of models in M , di = (m − 1)−1
∑

j∈M di,j, is

the simple loss of the ith model relative to the averages losses across models
in the set M , and di,j = (m)−1

∑m
t=1 di,j,t measures the relative sample loss

between the ith and ith models. Since the distribution of the test statistic
depends on unknown parameters a bootstrap procedure is used to estimate
the distribution.

In this paper, the MCS is applied with classical criteria loss function
(Brier’s Quadratic Probability Score) and with profit maximization loss func-
tion (risk-adjusted returns). As regards investment strategies, it should be
noted that the MCS aims at finding the best model and all models which
are indistinguishable from the best, not those better than the benchmark.
To determined if models are better than the benchmark, the stepwise test of
multiple reality check by Romano and Wolf (2005) and the stepwise multiple
superior predictive ability test by Hsu et al. (2013) should be considered.
However, if the benchmark is not selected in the best models set, investors
can conclude that their strategies ”beat” the benchmark.

3 Empirical results

3.1 United States

The two-step model selection is computed as described previously. The first
step of the model selection is to find the best set of models according to the
MCS procedure based on Brier’s Quadratic Probability Score (QPS) and
then the model selection is refined based on the the area under the ROC curve
(AUROC). The AUROC metric is thus only computed for models included

in M̂∗
80%. Table 1 highlights classical metrics for the models in the United

States.
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Table 1: Classical evaluation criteria in the United States

QPS AUROC

SPB 0.13
RF 0.07∗∗ 0.94
BTB 0.05∗∗ 0.94
CFBTB−RF−SPB 0.07∗∗ 0.94
CFRF−SPB 0.09 0.93
CFRF−BTB 0.06∗∗ 0.94
CF SPB−BTB 0.08∗∗ 0.94
Prob 0.22
Acc 0.21
Slow 0.79
Random 0.25

Note: This table reports classical metrics used to evaluate the quality of the models: the area under the ROC
curve (AUROC) and the Brier’s Quadratic Probability Score (QPS). * and ** indicate the model is in the set

of best models M̂∗
20% and M̂∗

80%, respectively. SPB refers to a boosting model based on squared error loss with
P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss function

with decision trees, CFBTB−RF−SPB combines SPB,RF and BTB models, CFRF−SPB combines SPB and RF

models, CFRF−BTB combines RF and BTB models, CFSPB−BTB combines SPB and BTB models,Prob refers
to the probit model based on the term spread, Acc classifies all data as ”acceleration”, Slow classifies all data as
”slowdown” and Random randomly assigns classes based on the proportions found in the training data.

The performance of the models are impressive and are consistent with
the results found in Berge (2015). Ensemble machine learning models built
are significantly and statistically better than random guessing. ”RF” and
”BTB” belong to M̂∗

80%. ”SPB” is the only ”basic” model not selected
in any best models set. Moreover, combining forecasts is confirmed to be
effective. Comparisons made with the test proposed by Hanley and McNeil
(1982) between models in M̂∗

80% conclude that no model is better than the
others.

The ability to produce profits it now tested. Tables 2 and 3 emphasize
that active investment strategies based on the growth cycle achieve superb
risk-adjusted returns and outperform the passive buy-and-hold benchmark.
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Table 2: Summary of return and risk measures in the United States:
120/80 equity strategy

Average returns Volatily PVR MDD
SPB 0.110∗ 0.149 0.74 -0.43
RF 0.107 0.147 0.72 -0.43
BTB 0.109∗∗ 0.146 0.75 -0.44
CFBTB−RF−SPB 0.109∗∗ 0.145 0.75 -0.43
CFRF−SPB 0.105 0.147 0.72 -0.43
CFRF−BTB 0.111∗∗ 0.146 0.76 -0.43
CF SPB−BTB 0.109∗∗ 0.146 0.74 -0.44
Prob 0.094 0.173 0.54 -0.57
Acc 0.099 0.177 0.56 -0.58
Slow 0.066 0.118 0.56 -0.43
Random 0.092 0.155 0.59 -0.51
Benchmark 0.083 0.147 0.56 -0.51

Note: This table reports profit maximization measures for 120/80 equity strategy based on the state of the growth
cycle induced by the models. Returns are monthly and annualized. The volatility corresponds to the annualized
standard deviation. The performance to volatility ratio (PVR) compares the expected returns of an investment to the
amount of risk undertaken to capture these returns. The Max drawdown (MDD) measures the largest single drop from

peak to bottom in the value of a portfolio. * and ** indicate the model is in the set of best models M̂∗
20% and M̂∗

80%,
respectively. SPB refers to a boosting model based on squared error loss with P-splines, RF refers to a random

forest model, BTB refers to a boosting model based on binomial loss function with decision trees, CFBTB−RF−SPB

combines SPB,RF and BTB models, CFRF−SPB combines SPB and RF models, CFRF−BTB combines RF and

BTB models, CFSPB−BTB combines SPB and BTB models, Prob refers to the probit model based on the term
spread, Acc classifies all data as ”acceleration”, Slow classifies all data as ”slowdown”, Random randomly assigns
classes based on the proportions found in the training data and Benchmark refers to the passive buy-and-hold
investment strategy.
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Table 3: Summary of return and risk measures in the United States:
dynamic asset allocation

Average returns Volatily PVR MDD
SPB 0.091∗∗ 0.090 1 -0.18
RF 0.088∗ 0.088 0.99 -0.18
BTB 0.091∗∗ 0.087 1 -0.20
CFBTB−RF−SPB 0.091∗∗ 0.086 1.1 -0.18
CFRF−SPB 0.086∗ 0.088 0.98 -0.18
CFRF−BTB 0.093∗∗ 0.086 1.1 -0.18
CF SPB−BTB 0.090∗∗ 0.087 1 -0.20
Prob 0.074 0.113 0.66 -0.39
Acc 0.075 0.116 0.65 -0.42
Slow 0.060∗ 0.058 1 -0.18
Random 0.076 0.095 0.79 -0.30
Benchmark 0.068 0.085 0.79 -0.31

Note: This table reports profit maximization measures for a dynamic asset allocation between bonds and equities
based on the state of the growth cycle induced by the models. Returns are monthly and annualized. The volatility
corresponds to the annualized standard deviation. The performance to volatility ratio (PVR) compares the expected
returns of an investment to the amount of risk undertaken to capture these returns. The Max drawdown (MDD)
measures the largest single drop from peak to bottom in the value of a portfolio. * and ** indicate the model is in

the set of best models M̂∗
20% and M̂∗

80%, respectively. SPB refers to a boosting model based on squared error loss
with P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss function

with decision trees, CFBTB−RF−SPB combines SPB,RF and BTB models, CFRF−SPB combines SPB and RF

models, CFRF−BTB combines RF and BTB models, CFSPB−BTB combines SPB and BTB models, Prob refers
to the probit model based on the term spread, Acc classifies all data as ”acceleration”, Slow classifies all data as
”slowdown”, Random randomly assigns classes based on the proportions found in the training data and Benchmark
refers to the passive buy-and-hold investment strategy.

Table 2 points out that several strategies based on the growth cycle de-
tection outperform the benchmark: it is thus possible to time the stock
market based on economic cycles in real time. These results have naturally
implications for the risk management and hedging. Especially, in the op-
tions market one can utilize the current state of the economy to hedge the
portfolio against the possible price declines. For example, writing an out-of-
money covered call or buy a put option when the stock market is expected
to decrease (slowdown) would limit the losses.

Selecting the best model is still complicated. In comparison with the
”classical” case, M̂∗

80% turns out to be quite different.
Surprisingly, ”RF” is never selected. ”SPB” is not included in any

best models set for economists but can be useful for investors, since it is
chosen in M̂∗

20%. Importantly, ”BTB”, ”CFBTB−RF−SPB”, ”CFRF−BTB”,
”CF SPB−BTB” are selected in the best models set for economists and for
equity investors.

Moreover, dynamic asset allocation delivers a substantial improvement in
risk-adjusted performance as compared to static asset allocation, especially
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for investors who seek to avoid large losses. The reduction of the MDD, which
focuses on the danger of permanent loss of capital as a sensible measure of
risk, is what risk-averse investors value the most. Portfolio rebalancing based
on the stage of the growth cycle in real time in the United States is thus
realisable. Again, the best models sets differ from the previous cases. At
last, SPB is attached to M̂∗

80%. It should be noted that the strategy based

on Slow, which is overweighted in bonds, belongs to M̂∗
20%, in line with the

thrilling and non-reproducible performance of the bond market. Importantly,
”BTB”, ”CFBTB−RF−SPB”,”CFRF−BTB”,”CF SPB−BTB” are still selected in
the best models set.

To sum up, depending on the data and the objective, the model selection
is quite different. That said, ensemble machine learning algorithms per-
form very well and combining forecast is proved to be useful. For instance,
”CFBTB−RF−SPB”, which is an equal weight combination of the three ”basic”
models, is always selected in the best models sets.

3.2 Euro area

The same model selection methodology is applied in the euro area. The
first step is to find the best set of models according to the MCS procedure
based on Brier’s Quadratic Probability Score (QPS) and then this selection
is refined based on the the area under the ROC curve (AUROC). Table 4
highlights classical metrics for the models in the euro area.
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Table 4: Classical evaluation criteria in the euro area

QPS AUROC

SPB 0.12
RF 0.11
BTB 0.12
CFBTB−RF−SPB 0.10∗∗ 0.93
CFRF−SPB 0.10∗∗ 0.93
CFRF−BTB 0.11
CF SPB−BTB 0.11
Prob 0.25
Acc 0.45
Slow 0.54
Random 0.48

Note: This table reports classical metrics used to evaluate the quality of the models: the area under the ROC
curve (AUROC) and the Brier’s Quadratic Probability Score (QPS). * and ** indicate the model is in the set

of best models M̂∗
20% and M̂∗

80%, respectively. SPB refers to a boosting model based on squared error loss with
P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss function

with decision trees, CFBTB−RF−SPB combines SPB,RF and BTB models, CFRF−SPB combines SPB and RF

models, CFRF−BTB combines RF and BTB models, CFSPB−BTB combines SPB and BTB models, Prob refers
to the probit model based on the term spread, Acc classifies all data as ”acceleration”, Slow classifies all data as
”slowdown” and Random randomly assigns classes based on the proportions found in the training data.

The performance of ensemble machine learning models are notable and
are significantly better than random guessing. Metrics in the euro area are
less remarkable than in the United States. Indeed, the persistence of the
regimes is smaller in the euro area growth cycle, the real-time classification
is thus harder. Surprisingly, only combining forecasts models are included
in the best models sets. The test proposed by Hanley and McNeil (1982)
between ”CFBTB−RF−SPB” and ”CFRF−SPB” concludes that no model is
better than the other.

The ability to generate profits it now analysed. Tables 5 and 6 highlight
that active investment strategies based on the growth cycle also achieve ex-
cellent risk-adjusted returns and outperform the passive buy-and-hold bench-
mark. Naturally, the risk management and hedging implications described
for the United States also apply in the euro area.
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Table 5: Summary of return and risk measures in the euro area:
120/80 equity strategy

Average returns Volatily PVR MDD
SPB 0.085∗∗ 0.161 0.53 -0.46
RF 0.083∗∗ 0.160 0.52 -0.46
BTB 0.079∗ 0.158 0.50 -0.46
CFBTB−RF−SPB 0.083∗∗ 0.161 0.53 -0.46
CFRF−SPB 0.071∗ 0.159 0.50 -0.46
CFRF−BTB 0.082∗ 0.163 0.52 -0.46
CF SPB−BTB 0.080∗ 0.161 0.51 -0.46
Prob 0.075 0.182 0.41 -0.48
Acc 0.077 0.207 0.37 -0.61
Slow 0.051 0.138 0.37 -0.43
Random 0.076 0.182 0.42 -0.53
Benchmark 0.064 0.173 0.37 -0.54

Note: This table reports profit maximization measures for 120/80 equity strategy based on the state of the growth
cycle induced by the models. Returns are monthly and annualized. The volatility corresponds to the annualized
standard deviation. The performance to volatility ratio (PVR) compares the expected returns of an investment to the
amount of risk undertaken to capture these returns. The Max drawdown (MDD) measures the largest single drop from

peak to bottom in the value of a portfolio. * and ** indicate the model is in the set of best models M̂∗
20% and M̂∗

80%,
respectively. SPB refers to a boosting model based on squared error loss with P-splines, RF refers to a random

forest model, BTB refers to a boosting model based on binomial loss function with decision trees, CFBTB−RF−SPB

combines SPB,RF and BTB models, CFRF−SPB combines SPB and RF models, CFRF−BTB combines RF and

BTB models, CFSPB−BTB combines SPB and BTB models, Prob refers to the probit model based on the term
spread, Acc classifies all data as ”acceleration”, Slow classifies all data as ”slowdown”, Random randomly assigns
classes based on the proportions found in the training data and Benchmark refers to the passive buy-and-hold
investment strategy.
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Table 6: Summary of return and risk measures in the euro area:
dynamic asset allocation

Average returns Volatily PVR MDD
SPB 0.081∗∗ 0.094 0.86 -0.21
RF 0.080∗∗ 0.093 0.86 -0.22
BTB 0.075∗ 0.091 0.83 -0.22
CFBTB−RF−SPB 0.079∗∗ 0.092 0.84 -0.22
CFRF−SPB 0.078∗ 0.094 0.83 -0.22
CFRF−BTB 0.080∗∗ 0.093 0.86 -0.22
CF SPB−BTB 0.079∗∗ 0.093 0.85 -0.21
Prob 0.064 0.114 0.56 -0.25
Acc 0.060 0.137 0.44 -0.44
Slow 0.052∗ 0.070 0.75 -0.21
Random 0.064 0.115 0.55 -0.32
Benchmark 0.06 0.10 0.55 -0.34

Note: This table reports profit maximization measures for a dynamic asset allocation between bonds and equities
based on the state of the growth cycle induced by the models. Returns are monthly and annualized. The volatility
corresponds to the annualized standard deviation. The performance to volatility ratio (PVR) compares the expected
returns of an investment to the amount of risk undertaken to capture these returns. The Max drawdown (MDD)
measures the largest single drop from peak to bottom in the value of a portfolio. * and ** indicate the model is in

the set of best models M̂∗
20% and M̂∗

80%, respectively. SPB refers to a boosting model based on squared error loss
with P-splines, RF refers to a random forest model, BTB refers to a boosting model based on binomial loss function

with decision trees, CFBTB−RF−SPB combines SPB,RF and BTB models, CFRF−SPB combines SPB and RF

models, CFRF−BTB combines RF and BTB models, CFSPB−BTB combines SPB and BTB models, Prob refers
to the probit model based on the term spread, Acc classifies all data as ”acceleration”, Slow classifies all data as
”slowdown”, Random randomly assigns classes based on the proportions found in the training data and Benchmark
refers to the passive buy-and-hold investment strategy.

As regards equity strategies, basic strategies based on the growth cycle
induced by several models outperform the benchmark and no alternative
classifiers are included in any best models sets. Selecting the best model is
still complicated. In comparison with the ”classical” case, M̂∗

80% turns out to
be quite different and basic models such as SPB and RF are included and
CFRF−SPB is only attached to M̂∗

20%. In this case, ”BTB” is less effective

than the others two basic models as ”BTB” is only chosen in M̂∗
20%. Impor-

tantly, ”CF SPB−BTB” is selected in the best models set for economists and
for equity investors.

Dynamic asset allocation delivers a substantial improvement in risk-
adjusted performance as compared to static asset allocation, especially for
investors who seek to avoid large losses. It is thus possible to rebalance the
portfolio based on the stage of the growth cycle in real time in the euro area.
SPB and RF perform well as those models belongs to M̂∗

80%. ”BTB” is
again less effective than the others two basic models as ”BTB” is only se-
lected in M̂∗

20%. As in the American case, the strategy based on Slow, which

is overweighted in bonds, is selected in M̂∗
20%, in line with the thrilling and
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non-reproducible performance of the bond market. CFBTB−RF−SPB is still
selected in the best models set.

All in all, all results found for the United States also apply for the euro
area. Depending on the data and the objective the best models set can
be quite different. Ensemble machine learning algorithms perform well and
combining forecast is proved to be useful. Again, ”CFBTB−RF−SPB”, which
is an equal weight combination of the three ”basic” models, is selected in all
best models sets.

Conclusion

Raffinot (2014) emphasizes that investment strategies based on the turning
points of the growth cycle, better known as the output gap, achieve impres-
sive risk-adjusted returns... in theory. But, in real time, economists often
fail to detect if a new economic phase has already begun.

Over the last couple of decades, researchers in the machine learning com-
munity have developed more complex methods, also called ensemble learn-
ing, which improve prediction performances. Ensemble methods are learn-
ing models that achieve performance by combining the opinions of multiple
learners. The two most popular techniques for constructing ensembles are
random forests (Breiman (2001)) and boosting (Schapire (1990)). The two
features of those algorithms are their abilities to entertain a large number of
predictors and to perform estimation and variable selection simultaneously.
Paradoxically, both methods work by adding randomness to the data (Varian
(2014)), although they have substantial differences. Random forests rely on
simple averaging of models in the ensemble and derive their strength from
two aspects: randomizing subsamples of the training data and randomizing
the selection of features. Boosting combines models that do not perform
particularly well individually into one with much improved properties. It is
an iterative process where the errors are kept being modelled.

Three models based on random forest and boosting algorithms are created
to quickly and accurately detect growth cycle turning points in real time, in
the United States and in the euro area. Those models are then combined,
as averaging forecasts from different models often improves upon forecasts
based on a single model (Bates and Granger (1969)).

To assess the value of the models, profit maximization measures are em-
ployed in addition to more standard criteria, since, for investors, the useful-
ness of a signal depends on the rewards associated with the actions taken
by the agent as a result of the forecast. When comparing predictive accu-
racy and profit measures, the model confidence set procedure (Hansen et al.
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(2011)) is applied to avoid data snooping, which occurs when a given set of
data is used more than once for purposes of inference or model selection.

Ensemble machine learning algorithms are very effective to detect eco-
nomic turning points. Strategies based on the turning points of the growth
cycle achieve thus excellent risk-adjusted returns: macroeconomists can get
rich nowcasting economic turning points. However, the selection of the best
model is difficult. For instance, economists and investors would not always
choose the same model. Moreover, depending on the data and the objective,
random forest sometimes performs better than boosting, sometimes not. In
the end, economists and investors should consider an equal weight combina-
tion of the three ”basic” models, since this mix is selected in all best models
sets.

Last but not least, this article opens the door for further research. An
attempt to forecast growth cycle and business cycle turning points three to
twelve months ahead could be very interesting.
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Appendix A: Economic cycles

The classical business cycle definition is due to Burns and Mitchell (1946):
”Business cycles are a type of fluctuation found in the aggregate economic
activity of nations that organize their work mainly in business enterprises:
a cycle consists of expansions occurring at about the same time in many
economic activities, followed by similarly general recessions, contractions,
and revivals which merge into the expansion phase of the next cycle”. The
business cycle is meant to reproduce the cycle of the global level of activity.
A cycle consists of expansions occurring at about the same time in many
economic activities, followed by similarly general recessions, contractions,
and revivals which merge into the expansion phase of the next cycle The
turning points of that cycle (named B for peaks and C for troughs) separate
periods of recessions from periods of expansions. Burns and Mitchell (1946)
point out two main stylised facts of the economic cycle. The first is the
co-movement among individual economic variables: most of macroeconomic
time series evolve together along the cycle. The second is non-linearity: the
effect of a shock depends on the rest of the economic environment. For
instance, small shock, such as a decrease in housing prices, can sometimes
have large effects.

The growth cycle, introduced by Mintz (1974), seeks to represent the
fluctuations of the GDP around its long-term trend, which can be seen as the
potential growth rate. The growth cycle is thus better known as the output
gap. Mintz (1974) indicates that the rationale for investigating the growth
cycle is that absolute prolonged declines in the level of economic activity
tend to be rare events when the economy grows at a sustained and stable
rate, so that in practice many economies do not very often exhibit recessions
in classical terms, so other approaches to produce information on economic
fluctuations have to be proposed. Growth cycle turning points (named A
for peaks and D for troughs) have a clear meaning: peak A is reached when
the growth rate decreases below the trend growth rate and the trough D
is reached when the growth rate overpasses it again. Those downward and
upward phases are respectively named slowdown and acceleration.

The description of different economic phases is refined by jointly consid-
ering the classical business cycle and the growth cycle: the ABCD approach
(Anas and Ferrara (2004)). This framework improves the classical analysis
of economic cycles by allowing two distinct phases or four distinct phases.
During an acceleration phase, the current growth rate of the activity is above
the long-term trend growth rate. The downward movement will first mate-
rialize when the growth rate will decrease below the long-term trend growth
rate (point A). If the slowdown is not severe, the point A will be followed

29



by point D, when the growth rate overpasses its long-term trend. Otherwise,
if the slowdown gains in intensity, the growth rate becomes negative enough
to provoke a recession (point B). Eventually, the economy should start to
recover and exits from the recession (point C). If the recovery strengthens,
the growth rate should overpass its trend (point D), otherwise a double-dip
will materialize (point B).

Hence, all recessions involve slowdowns, but not all slowdowns involve
recessions.

Appendix B: Turning point chronology

The complete chronology is contained in the table 7:

Table 7: Turning point chronology

Euro area (Jan 1989-December 2013) United States (Jan 1985-Dec 2013)

Trough D March 1991 Peak A November 1985
Peak A August 1993 Trough D April 1987

Trough D March 1991 Peak A December 1989
Peak A March 1995 Trough D August 1991

Trough D December 1996 Peak A January 1993
Peak A March 1998 Trough D July 1993

Trough D February 1999 Peak A September 94
Peak A December 2000 Trough D March 1996

Trough D September 2003 Peak A June 2000
Peak A May 2004 Trough D February 2003

Trough D May 2005 Peak A October 2007
Peak A October 2007 Trough D September 2009
Peak B March 2008 Peak A June 2011

Trough C April 2009 Trough D December 2011
Trough D August 2009
Peak A June 2011
Peak B August 2011

Trough C November 2012
Trough D March 2013

Source: Raffinot (2014)
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